An immersed boundary method for interfacial flows with insoluble surfactant

نویسندگان

  • Ming-Chih Lai
  • Yu-Hau Tseng
  • Huaxiong Huang
چکیده

In this paper, an immersed boundary method is proposed for the simulation of two-dimensional fluid interfaces with insoluble surfactant. The governing equations are written in a usual immersed boundary formulation where a mixture of Eulerian flow and Lagrangian interfacial variables are used and the linkage between these two set of variables is provided by the Dirac delta function. The immersed boundary force comes from the surface tension which is affected by the distribution of surfactant along the interface. By tracking the interface in a Lagrangian manner, a simplified surfactant transport equation is derived. The numerical method involves solving the Navier–Stokes equations on a staggered grid by a semi-implicit pressure increment projection method where the immersed interfacial forces are calculated at the beginning of each time step. Once the velocity value and interfacial configurations are obtained, surfactant concentration is updated using the transport equation. In this paper, a new symmetric discretization for the surfactant concentration equation is proposed that ensures the surfactant mass conservation numerically. The effect of surfactant on drop deformation in a shear flow is investigated in detail. 2008 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACoupled Immersed Interface and Level SetMethod for Three-Dimensional Interfacial Flows with Insoluble Surfactant

In this paper, a numerical method is presented for simulating the 3D interfacial flows with insoluble surfactant. The numerical scheme consists of a 3D immersed interface method (IIM) for solving Stokes equations with jumps across the interface and a 3D level-set method for solving the surfactant convection-diffusion equation along a moving and deforming interface. The 3D IIM Poisson solver mod...

متن کامل

A level-set method for interfacial flows with surfactant

A level-set method for the simulation of fluid interfaces with insoluble surfactant is presented in two-dimensions. The method can be straightforwardly extended to three-dimensions and to soluble surfactants. The method couples a semi-implicit discretization for solving the surfactant transport equation recently developed by Xu and Zhao [J. Xu, H. Zhao. An Eulerian formulation for solving parti...

متن کامل

Numerical method for 3D simulation of foam dynamics in the presence of surfactant

3D numerical method is presented for simulation of foam formation and dynamics in viscous flows in the presence of insoluble surfactant and under the influence of van der Waals forces. The mathematical model is based on the Stokes equations in the fluid phases, coupled with velocity and stress boundary conditions at the interfaces. A nonuniform surfactant concentration on the interfaces, govern...

متن کامل

Boundary Integral Method for Deformable Interfaces in the Presence of Insoluble Surfactants

A 3D boundary-integral/finite-volume method is presented for the simulation of drop dynamics in viscous flows in the presence of insoluble surfactants. The concentration of surfactant on the interfaces is governed by a convection-diffusion equation, which takes into account an extra tangential velocity. The spatial derivatives are discretized by a finite-volume method with second-order accuracy...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008